3.4.8 \(\int (d \sec (e+f x))^{3/2} (b \tan (e+f x))^{5/2} \, dx\) [308]

3.4.8.1 Optimal result
3.4.8.2 Mathematica [C] (verified)
3.4.8.3 Rubi [A] (verified)
3.4.8.4 Maple [C] (verified)
3.4.8.5 Fricas [C] (verification not implemented)
3.4.8.6 Sympy [F(-1)]
3.4.8.7 Maxima [F]
3.4.8.8 Giac [F(-1)]
3.4.8.9 Mupad [F(-1)]

3.4.8.1 Optimal result

Integrand size = 25, antiderivative size = 131 \[ \int (d \sec (e+f x))^{3/2} (b \tan (e+f x))^{5/2} \, dx=\frac {b^2 d^2 E\left (\left .\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{2 f \sqrt {d \sec (e+f x)} \sqrt {\sin (e+f x)}}-\frac {b d^2 (b \tan (e+f x))^{3/2}}{2 f \sqrt {d \sec (e+f x)}}+\frac {b (d \sec (e+f x))^{3/2} (b \tan (e+f x))^{3/2}}{3 f} \]

output
-1/2*b^2*d^2*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x) 
*EllipticE(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2))*(b*tan(f*x+e))^(1/2)/f/(d*se 
c(f*x+e))^(1/2)/sin(f*x+e)^(1/2)+1/3*b*(d*sec(f*x+e))^(3/2)*(b*tan(f*x+e)) 
^(3/2)/f-1/2*b*d^2*(b*tan(f*x+e))^(3/2)/f/(d*sec(f*x+e))^(1/2)
 
3.4.8.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.74 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.61 \[ \int (d \sec (e+f x))^{3/2} (b \tan (e+f x))^{5/2} \, dx=\frac {b d^2 \left (-3+2 \sec ^2(e+f x)+\operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {5}{4},\frac {7}{4},-\tan ^2(e+f x)\right ) \sqrt [4]{\sec ^2(e+f x)}\right ) (b \tan (e+f x))^{3/2}}{6 f \sqrt {d \sec (e+f x)}} \]

input
Integrate[(d*Sec[e + f*x])^(3/2)*(b*Tan[e + f*x])^(5/2),x]
 
output
(b*d^2*(-3 + 2*Sec[e + f*x]^2 + Hypergeometric2F1[3/4, 5/4, 7/4, -Tan[e + 
f*x]^2]*(Sec[e + f*x]^2)^(1/4))*(b*Tan[e + f*x])^(3/2))/(6*f*Sqrt[d*Sec[e 
+ f*x]])
 
3.4.8.3 Rubi [A] (verified)

Time = 0.72 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.02, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3091, 3042, 3093, 3042, 3096, 3042, 3121, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (b \tan (e+f x))^{5/2} (d \sec (e+f x))^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (b \tan (e+f x))^{5/2} (d \sec (e+f x))^{3/2}dx\)

\(\Big \downarrow \) 3091

\(\displaystyle \frac {b (b \tan (e+f x))^{3/2} (d \sec (e+f x))^{3/2}}{3 f}-\frac {1}{2} b^2 \int (d \sec (e+f x))^{3/2} \sqrt {b \tan (e+f x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b (b \tan (e+f x))^{3/2} (d \sec (e+f x))^{3/2}}{3 f}-\frac {1}{2} b^2 \int (d \sec (e+f x))^{3/2} \sqrt {b \tan (e+f x)}dx\)

\(\Big \downarrow \) 3093

\(\displaystyle \frac {b (b \tan (e+f x))^{3/2} (d \sec (e+f x))^{3/2}}{3 f}-\frac {1}{2} b^2 \left (\frac {d^2 (b \tan (e+f x))^{3/2}}{b f \sqrt {d \sec (e+f x)}}-\frac {1}{2} d^2 \int \frac {\sqrt {b \tan (e+f x)}}{\sqrt {d \sec (e+f x)}}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b (b \tan (e+f x))^{3/2} (d \sec (e+f x))^{3/2}}{3 f}-\frac {1}{2} b^2 \left (\frac {d^2 (b \tan (e+f x))^{3/2}}{b f \sqrt {d \sec (e+f x)}}-\frac {1}{2} d^2 \int \frac {\sqrt {b \tan (e+f x)}}{\sqrt {d \sec (e+f x)}}dx\right )\)

\(\Big \downarrow \) 3096

\(\displaystyle \frac {b (b \tan (e+f x))^{3/2} (d \sec (e+f x))^{3/2}}{3 f}-\frac {1}{2} b^2 \left (\frac {d^2 (b \tan (e+f x))^{3/2}}{b f \sqrt {d \sec (e+f x)}}-\frac {d^2 \sqrt {b \tan (e+f x)} \int \sqrt {b \sin (e+f x)}dx}{2 \sqrt {b \sin (e+f x)} \sqrt {d \sec (e+f x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b (b \tan (e+f x))^{3/2} (d \sec (e+f x))^{3/2}}{3 f}-\frac {1}{2} b^2 \left (\frac {d^2 (b \tan (e+f x))^{3/2}}{b f \sqrt {d \sec (e+f x)}}-\frac {d^2 \sqrt {b \tan (e+f x)} \int \sqrt {b \sin (e+f x)}dx}{2 \sqrt {b \sin (e+f x)} \sqrt {d \sec (e+f x)}}\right )\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {b (b \tan (e+f x))^{3/2} (d \sec (e+f x))^{3/2}}{3 f}-\frac {1}{2} b^2 \left (\frac {d^2 (b \tan (e+f x))^{3/2}}{b f \sqrt {d \sec (e+f x)}}-\frac {d^2 \sqrt {b \tan (e+f x)} \int \sqrt {\sin (e+f x)}dx}{2 \sqrt {\sin (e+f x)} \sqrt {d \sec (e+f x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b (b \tan (e+f x))^{3/2} (d \sec (e+f x))^{3/2}}{3 f}-\frac {1}{2} b^2 \left (\frac {d^2 (b \tan (e+f x))^{3/2}}{b f \sqrt {d \sec (e+f x)}}-\frac {d^2 \sqrt {b \tan (e+f x)} \int \sqrt {\sin (e+f x)}dx}{2 \sqrt {\sin (e+f x)} \sqrt {d \sec (e+f x)}}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {b (b \tan (e+f x))^{3/2} (d \sec (e+f x))^{3/2}}{3 f}-\frac {1}{2} b^2 \left (\frac {d^2 (b \tan (e+f x))^{3/2}}{b f \sqrt {d \sec (e+f x)}}-\frac {d^2 E\left (\left .\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{f \sqrt {\sin (e+f x)} \sqrt {d \sec (e+f x)}}\right )\)

input
Int[(d*Sec[e + f*x])^(3/2)*(b*Tan[e + f*x])^(5/2),x]
 
output
(b*(d*Sec[e + f*x])^(3/2)*(b*Tan[e + f*x])^(3/2))/(3*f) - (b^2*(-((d^2*Ell 
ipticE[(e - Pi/2 + f*x)/2, 2]*Sqrt[b*Tan[e + f*x]])/(f*Sqrt[d*Sec[e + f*x] 
]*Sqrt[Sin[e + f*x]])) + (d^2*(b*Tan[e + f*x])^(3/2))/(b*f*Sqrt[d*Sec[e + 
f*x]])))/2
 

3.4.8.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3091
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^( 
n_), x_Symbol] :> Simp[b*(a*Sec[e + f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*(m 
 + n - 1))), x] - Simp[b^2*((n - 1)/(m + n - 1))   Int[(a*Sec[e + f*x])^m*( 
b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] & 
& NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]
 

rule 3093
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^( 
n_), x_Symbol] :> Simp[a^2*(a*Sec[e + f*x])^(m - 2)*((b*Tan[e + f*x])^(n + 
1)/(b*f*(m + n - 1))), x] + Simp[a^2*((m - 2)/(m + n - 1))   Int[(a*Sec[e + 
 f*x])^(m - 2)*(b*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && ( 
GtQ[m, 1] || (EqQ[m, 1] && EqQ[n, 1/2])) && NeQ[m + n - 1, 0] && IntegersQ[ 
2*m, 2*n]
 

rule 3096
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[a^(m + n)*((b*Tan[e + f*x])^n/((a*Sec[e + f*x])^n*(b* 
Sin[e + f*x])^n))   Int[(b*Sin[e + f*x])^n/Cos[e + f*x]^(m + n), x], x] /; 
FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[n + 1/2] && IntegerQ[m + 1/2]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 
3.4.8.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.89 (sec) , antiderivative size = 487, normalized size of antiderivative = 3.72

method result size
default \(\frac {\left (\sec ^{2}\left (f x +e \right )\right ) \csc \left (f x +e \right ) \left (-6 \sqrt {-i \left (i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}\, \sqrt {-i \left (\cot \left (f x +e \right )-\csc \left (f x +e \right )+i\right )}\, \sqrt {i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right )}\, E\left (\sqrt {-i \left (i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}, \frac {\sqrt {2}}{2}\right ) \left (\cos ^{4}\left (f x +e \right )\right )+3 \sqrt {-i \left (i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}\, \sqrt {-i \left (\cot \left (f x +e \right )-\csc \left (f x +e \right )+i\right )}\, \sqrt {i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right )}\, F\left (\sqrt {-i \left (i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}, \frac {\sqrt {2}}{2}\right ) \left (\cos ^{4}\left (f x +e \right )\right )-6 \sqrt {-i \left (i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}\, \sqrt {-i \left (\cot \left (f x +e \right )-\csc \left (f x +e \right )+i\right )}\, \sqrt {i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right )}\, E\left (\sqrt {-i \left (i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}, \frac {\sqrt {2}}{2}\right ) \left (\cos ^{3}\left (f x +e \right )\right )+3 \sqrt {-i \left (i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}\, \sqrt {-i \left (\cot \left (f x +e \right )-\csc \left (f x +e \right )+i\right )}\, \sqrt {i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right )}\, F\left (\sqrt {-i \left (i-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}, \frac {\sqrt {2}}{2}\right ) \left (\cos ^{3}\left (f x +e \right )\right )+3 \sqrt {2}\, \left (\cos ^{3}\left (f x +e \right )\right )-5 \sqrt {2}\, \left (\cos ^{2}\left (f x +e \right )\right )+2 \sqrt {2}\right ) d \sqrt {d \sec \left (f x +e \right )}\, b^{2} \sqrt {b \tan \left (f x +e \right )}\, \sqrt {2}}{12 f}\) \(487\)

input
int((d*sec(f*x+e))^(3/2)*(b*tan(f*x+e))^(5/2),x,method=_RETURNVERBOSE)
 
output
1/12/f*sec(f*x+e)^2*csc(f*x+e)*(-6*(-I*(I-cot(f*x+e)+csc(f*x+e)))^(1/2)*(- 
I*(cot(f*x+e)-csc(f*x+e)+I))^(1/2)*(I*(csc(f*x+e)-cot(f*x+e)))^(1/2)*Ellip 
ticE((-I*(I-cot(f*x+e)+csc(f*x+e)))^(1/2),1/2*2^(1/2))*cos(f*x+e)^4+3*(-I* 
(I-cot(f*x+e)+csc(f*x+e)))^(1/2)*(-I*(cot(f*x+e)-csc(f*x+e)+I))^(1/2)*(I*( 
csc(f*x+e)-cot(f*x+e)))^(1/2)*EllipticF((-I*(I-cot(f*x+e)+csc(f*x+e)))^(1/ 
2),1/2*2^(1/2))*cos(f*x+e)^4-6*(-I*(I-cot(f*x+e)+csc(f*x+e)))^(1/2)*(-I*(c 
ot(f*x+e)-csc(f*x+e)+I))^(1/2)*(I*(csc(f*x+e)-cot(f*x+e)))^(1/2)*EllipticE 
((-I*(I-cot(f*x+e)+csc(f*x+e)))^(1/2),1/2*2^(1/2))*cos(f*x+e)^3+3*(-I*(I-c 
ot(f*x+e)+csc(f*x+e)))^(1/2)*(-I*(cot(f*x+e)-csc(f*x+e)+I))^(1/2)*(I*(csc( 
f*x+e)-cot(f*x+e)))^(1/2)*EllipticF((-I*(I-cot(f*x+e)+csc(f*x+e)))^(1/2),1 
/2*2^(1/2))*cos(f*x+e)^3+3*2^(1/2)*cos(f*x+e)^3-5*2^(1/2)*cos(f*x+e)^2+2*2 
^(1/2))*d*(d*sec(f*x+e))^(1/2)*b^2*(b*tan(f*x+e))^(1/2)*2^(1/2)
 
3.4.8.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.18 \[ \int (d \sec (e+f x))^{3/2} (b \tan (e+f x))^{5/2} \, dx=\frac {3 i \, \sqrt {-2 i \, b d} b^{2} d \cos \left (f x + e\right )^{2} {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) - 3 i \, \sqrt {2 i \, b d} b^{2} d \cos \left (f x + e\right )^{2} {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right ) - 2 \, {\left (3 \, b^{2} d \cos \left (f x + e\right )^{2} - 2 \, b^{2} d\right )} \sqrt {\frac {b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt {\frac {d}{\cos \left (f x + e\right )}} \sin \left (f x + e\right )}{12 \, f \cos \left (f x + e\right )^{2}} \]

input
integrate((d*sec(f*x+e))^(3/2)*(b*tan(f*x+e))^(5/2),x, algorithm="fricas")
 
output
1/12*(3*I*sqrt(-2*I*b*d)*b^2*d*cos(f*x + e)^2*weierstrassZeta(4, 0, weiers 
trassPInverse(4, 0, cos(f*x + e) + I*sin(f*x + e))) - 3*I*sqrt(2*I*b*d)*b^ 
2*d*cos(f*x + e)^2*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(f*x 
 + e) - I*sin(f*x + e))) - 2*(3*b^2*d*cos(f*x + e)^2 - 2*b^2*d)*sqrt(b*sin 
(f*x + e)/cos(f*x + e))*sqrt(d/cos(f*x + e))*sin(f*x + e))/(f*cos(f*x + e) 
^2)
 
3.4.8.6 Sympy [F(-1)]

Timed out. \[ \int (d \sec (e+f x))^{3/2} (b \tan (e+f x))^{5/2} \, dx=\text {Timed out} \]

input
integrate((d*sec(f*x+e))**(3/2)*(b*tan(f*x+e))**(5/2),x)
 
output
Timed out
 
3.4.8.7 Maxima [F]

\[ \int (d \sec (e+f x))^{3/2} (b \tan (e+f x))^{5/2} \, dx=\int { \left (d \sec \left (f x + e\right )\right )^{\frac {3}{2}} \left (b \tan \left (f x + e\right )\right )^{\frac {5}{2}} \,d x } \]

input
integrate((d*sec(f*x+e))^(3/2)*(b*tan(f*x+e))^(5/2),x, algorithm="maxima")
 
output
integrate((d*sec(f*x + e))^(3/2)*(b*tan(f*x + e))^(5/2), x)
 
3.4.8.8 Giac [F(-1)]

Timed out. \[ \int (d \sec (e+f x))^{3/2} (b \tan (e+f x))^{5/2} \, dx=\text {Timed out} \]

input
integrate((d*sec(f*x+e))^(3/2)*(b*tan(f*x+e))^(5/2),x, algorithm="giac")
 
output
Timed out
 
3.4.8.9 Mupad [F(-1)]

Timed out. \[ \int (d \sec (e+f x))^{3/2} (b \tan (e+f x))^{5/2} \, dx=\int {\left (b\,\mathrm {tan}\left (e+f\,x\right )\right )}^{5/2}\,{\left (\frac {d}{\cos \left (e+f\,x\right )}\right )}^{3/2} \,d x \]

input
int((b*tan(e + f*x))^(5/2)*(d/cos(e + f*x))^(3/2),x)
 
output
int((b*tan(e + f*x))^(5/2)*(d/cos(e + f*x))^(3/2), x)